
Unit-3

Software Requirements and 

System Models 



 Software requirements[1] for a system are the description of what the system should do, the service or 

services that it provides and the constraints on its operation. The IEEE Standard Glossary of Software 

Engineering Terminology defines a requirement as:[2]

 A condition or capability needed by a user to solve a problem or achieve an objective

 A condition or capability that must be met or possessed by a system or system component to satisfy a 

contract, standard, specification, or other formally imposed document

 A documented representation of a condition or capability as in 1 or 2

 The activities related to working with software requirements can broadly be broken down into elicitation, 

analysis, specification, and management.[3]

 Note that the wording Software requirements is additionally used in software release notes to explain, 

which depending on software packages are required for a certain software to be built/installed/used.[

https://en.wikipedia.org/wiki/Software_requirements#cite_note-:0-1
https://en.wikipedia.org/wiki/Requirement
https://en.wikipedia.org/wiki/Software_requirements#cite_note-2
https://en.wikipedia.org/wiki/Capability_(systems_engineering)
https://en.wikipedia.org/wiki/Software_requirements#cite_note-3
https://en.wikipedia.org/wiki/Release_notes
https://en.wikipedia.org/wiki/Package_(package_management_system)
https://en.wikipedia.org/wiki/Software_requirements#cite_note-:0-1


Functional and non-functional requirements

 Requirements analysis is a very critical process that enables the success of a system or software project to 

be assessed. Requirements are generally split into two types: Functional and Non-functional requirements.



Functional Requirements

 These are the requirements that the end user specifically demands as basic facilities that the system should offer. All these functionalities need to be necessarily incorporated 
into the system as a part of the contract.

 These are represented or stated in the form of input to be given to the system, the operation performed and the output expected. They are the requirements stated by the user 
which one can see directly in the final product, unlike the non-functional requirements.

 Example:

 What are the features that we need to design for this system?

 What are the edge cases we need to consider, if any, in our design?

 Non-FunctionalRequirements
 These are the quality constraints that the system must satisfy according to the project contract. The priority or extent to which these factors are implemented varies from one 

project to another. They are also called non-behavioral requirements. They deal with issues like:

 Portability

 Security

 Maintainability

 Reliability

 Scalability

 Performance

 Reusability

 Flexibility

 Example:

 Each request should be processed with the minimum latency?

 System should be highly valuable.





Difference between Functional Requirements 

and Non-Functional Requirements:

Functional Requirements Non Functional Requirements

A functional requirement defines a system or its 

component.

A non-functional requirement defines the quality 

attribute of a software system.

It specifies “What should the software system do?”
It places constraints on “How should the software 

system fulfill the functional requirements?”

Functional requirement is specified by User.

Non-functional requirement is specified by technical 

peoples e.g. Architect, Technical leaders and 

software developers.

It is mandatory. It is not mandatory.

It is captured in use case. It is captured as a quality attribute.

Defined at a component level. Applied to a system as a whole.

Helps you verify the functionality of the software. Helps you to verify the performance of the software.



User requirements
 What is Software Requirements?

 According to IEEE standard 729, a requirement is defined as follows:

 A condition or capability needed by a user to solve a problem or achieve an objective

 A condition or capability that must be met or possessed by a system or system component to satisfy a 

contract, standard, specification or other formally imposed documents

 A documented representation of a condition or capability, as in 1 and 2.

 Types of Software Requirements

 Software Requirements are mainly classified into three types:



 1. Functional Requirements

 Definition: Functional requirements describe what the software should do. They define the functions or 
features that the system must have.

 Examples:

 User Authentication: The system must allow users to log in using a username and password.

 Search Functionality: The software should enable users to search for products by name or category.

 Report Generation: The system should be able to generate sales reports for a specified date range.

 Explanation: Functional requirements specify the actions that the software needs to perform. These are the 
basic features and functionalities that users expect from the software.

 2. Non-functional Requirements

 Definition: Non-functional requirements describe how the software performs a task rather than what it should 
do. They define the quality attributes, performance criteria, and constraints.

 Examples:

 Performance: The system should process 1,000 transactions per second.

 Usability: The software should be easy to use and have a user-friendly interface.

 Reliability: The system must have 99.9% uptime.

 Security: Data must be encrypted during transmission and storage.

 Explanation: Non-functional requirements are about the system’s behavior, quality, and constraints. They 
ensure that the software meets certain standards of performance, usability, reliability, and security.



 3. Domain Requirements

 Definition: Domain requirements are specific to the domain or industry in which the software operates. 

They include terminology, rules, and standards relevant to that particular domain.

 Examples:

 Healthcare: The software must comply with HIPAA regulations for handling patient data.

 Finance: The system should adhere to GAAP standards for financial reporting.

 E-commerce: The software should support various payment gateways like PayPal, Stripe, and credit cards.

 User requirements are statements in natural language along with corresponding diagrams (tables, forms, 

intuitive diagrams) detailing the services provided by the system and operational constraints it must comply 

with. Additionally, it’s worth noting that user requirements primarily focus on the user’s needs. Thus, these 

user requirements cater to the customer.





System requirements

 In software engineering, system requirements play a pivotal role in ensuring that the end product meets the 

needs of users and stakeholders. These requirements are a comprehensive description of the behavior and 

capabilities of a system, including both functional and non-functional aspects.

 Defining System Requirements

 System requirements are typically divided into two main categories: user requirements and system 

requirements. User requirements are statements in natural language, often accompanied by diagrams, that 

describe the services provided by the system and the operational constraints it must adhere to. These 

requirements focus on the user's needs and are understandable even to those without technical expertise. 

They are documented in a "User Requirements Document" using narrative text1.

 System requirements, on the other hand, are more detailed and technical. They are a structured document 

that outlines the system's functions, services, and operational constraints. Written primarily for developers, 

system requirements describe the functionality needed to fulfill user requirements. They act as a blueprint for 

developers, defining the components that need to be implemented. These requirements are often described in 

natural language but may also include structured forms and graphical notations. They are documented as a 

System Requirement Specification (SRS)1.

https://www.bing.com/ck/a?!&&p=b6f392c9e4ffcbeaJmltdHM9MTcyNDI4NDgwMCZpZ3VpZD0wOTkxZjA4Ni00N2I0LTY1NWItMWZmMS1lMTNjNDYxOTY0ZTAmaW5zaWQ9NTUyMA&ptn=3&ver=2&hsh=3&fclid=0991f086-47b4-655b-1ff1-e13c461964e0&psq=system+requirements+in+software+engineering&u=a1aHR0cHM6Ly9ndWlkaW5nY29kZS5jb20vdXNlci1hbmQtc3lzdGVtLXJlcXVpcmVtZW50cy1pbi1zb2Z0d2FyZS1lbmdpbmVlcmluZy8&ntb=1
https://www.bing.com/ck/a?!&&p=3996490660091480JmltdHM9MTcyNDI4NDgwMCZpZ3VpZD0wOTkxZjA4Ni00N2I0LTY1NWItMWZmMS1lMTNjNDYxOTY0ZTAmaW5zaWQ9NTUyMQ&ptn=3&ver=2&hsh=3&fclid=0991f086-47b4-655b-1ff1-e13c461964e0&psq=system+requirements+in+software+engineering&u=a1aHR0cHM6Ly9ndWlkaW5nY29kZS5jb20vdXNlci1hbmQtc3lzdGVtLXJlcXVpcmVtZW50cy1pbi1zb2Z0d2FyZS1lbmdpbmVlcmluZy8&ntb=1


 Types of System Requirements

 System requirements can be further classified into three types: functional, non-functional, and domain 
requirements2.

 Functional Requirements: These specify the basic functions that a system must perform. They are the 
capabilities that the system must have in terms of tasks and services. For example, in a hospital management 
system, a functional requirement might be the ability for doctors to access patient information.

 Non-functional Requirements: These define the quality attributes or constraints the system must meet, such 
as performance, security, reliability, and usability. They are not directly related to specific behaviors of the 
system but describe how the system should perform under certain conditions.

 Domain Requirements: These are specific to a particular domain or industry and are characteristic of a 
certain category of projects. They can be either functional or non-functional and are often based on standards 
or widely accepted feature sets within that domain.

 Importance of System Requirements

 The process of defining system requirements is known as requirements engineering. It is a critical phase in 
the software development lifecycle where developers and stakeholders agree on the services and constraints 
of the system. This phase produces a set of system requirements that serve as the foundation for the contract 
and guide the development process1.

 Properly documented system requirements ensure that all parties have a clear understanding of what the 
system is expected to do. They help in managing expectations and serve as a reference point throughout the 
development process. Moreover, they facilitate communication among the development team and 
stakeholders, providing a common language for discussing the system's capabilities and limitations.

https://www.bing.com/ck/a?!&&p=5e6f66db23872feeJmltdHM9MTcyNDI4NDgwMCZpZ3VpZD0wOTkxZjA4Ni00N2I0LTY1NWItMWZmMS1lMTNjNDYxOTY0ZTAmaW5zaWQ9NTAxMQ&ptn=3&ver=2&hsh=3&fclid=0991f086-47b4-655b-1ff1-e13c461964e0&u=a1aHR0cHM6Ly93d3cuZ2Vla3Nmb3JnZWVrcy5vcmcvc29mdHdhcmUtZW5naW5lZXJpbmctY2xhc3NpZmljYXRpb24tb2Ytc29mdHdhcmUtcmVxdWlyZW1lbnRzLw&ntb=1
https://www.bing.com/ck/a?!&&p=850a9100b9589c2cJmltdHM9MTcyNDI4NDgwMCZpZ3VpZD0wOTkxZjA4Ni00N2I0LTY1NWItMWZmMS1lMTNjNDYxOTY0ZTAmaW5zaWQ9NTAxMg&ptn=3&ver=2&hsh=3&fclid=0991f086-47b4-655b-1ff1-e13c461964e0&u=a1aHR0cHM6Ly9ndWlkaW5nY29kZS5jb20vdXNlci1hbmQtc3lzdGVtLXJlcXVpcmVtZW50cy1pbi1zb2Z0d2FyZS1lbmdpbmVlcmluZy8&ntb=1


interface specification
 User-interface (UI) design is a critical aspect of software development that focuses on the creation of interfaces for 

software and devices. The goal of UI design is to make the user's interaction as simple and efficient as possible, in 
terms of accomplishing user goals—what is often referred to as user-centered design.

 Key Principles of UI Design

 When designing user interfaces, there are several key principles and best practices to consider:

 User-Centered Design: The design should be tailored around the user's needs, abilities, and preferences. This 
involves understanding the user's tasks, goals, and context of use. The UI should facilitate the user's tasks and goals 
efficiently and effectively1.

 Consistency: Consistency in UI design helps users learn the system quickly and apply prior knowledge from one part 
of the application to another. Consistent use of elements such as icons, color schemes, typography, and terminology 
is crucial12.

 Simplicity: The UI should be simple, avoiding unnecessary elements that do not support user tasks. Complex systems 
should be broken down into manageable sub-tasks, and information should be presented in a way that's easy to 
understand2.

 Feedback: Users should receive immediate and clear feedback following their actions. This helps users understand 
the results of their interactions with the UI2.

 Accessibility: The design should be accessible to users with a wide range of abilities, including those with 
disabilities. This includes considerations for color contrast, text size, and compatibility with assistive technologies3.

 Flexibility: The UI should accommodate a range of user preferences and abilities, providing ways to customize the 
interface1.

https://www.bing.com/ck/a?!&&p=dc4b9cf2620be3b8JmltdHM9MTcyNDI4NDgwMCZpZ3VpZD0wOTkxZjA4Ni00N2I0LTY1NWItMWZmMS1lMTNjNDYxOTY0ZTAmaW5zaWQ9NTUyNg&ptn=3&ver=2&hsh=3&fclid=0991f086-47b4-655b-1ff1-e13c461964e0&psq=interface+specification+software+engineering&u=a1aHR0cHM6Ly93d3cuZ2Vla3Nmb3JnZWVrcy5vcmcvc29mdHdhcmUtZW5naW5lZXJpbmctdXNlci1pbnRlcmZhY2UtZGVzaWduLw&ntb=1
https://www.bing.com/ck/a?!&&p=bf3f5b3b64820cf0JmltdHM9MTcyNDI4NDgwMCZpZ3VpZD0wOTkxZjA4Ni00N2I0LTY1NWItMWZmMS1lMTNjNDYxOTY0ZTAmaW5zaWQ9NTUyNw&ptn=3&ver=2&hsh=3&fclid=0991f086-47b4-655b-1ff1-e13c461964e0&psq=interface+specification+software+engineering&u=a1aHR0cHM6Ly93d3cuZ2Vla3Nmb3JnZWVrcy5vcmcvc29mdHdhcmUtZW5naW5lZXJpbmctdXNlci1pbnRlcmZhY2UtZGVzaWduLw&ntb=1
https://www.bing.com/ck/a?!&&p=c8bb824a2439d9b5JmltdHM9MTcyNDI4NDgwMCZpZ3VpZD0wOTkxZjA4Ni00N2I0LTY1NWItMWZmMS1lMTNjNDYxOTY0ZTAmaW5zaWQ9NTUyOA&ptn=3&ver=2&hsh=3&fclid=0991f086-47b4-655b-1ff1-e13c461964e0&psq=interface+specification+software+engineering&u=a1aHR0cHM6Ly93d3cuaW50ZXJhY3Rpb24tZGVzaWduLm9yZy9saXRlcmF0dXJlL3RvcGljcy91aS1kZXNpZ24&ntb=1
https://www.bing.com/ck/a?!&&p=f8598c630adf0c3eJmltdHM9MTcyNDI4NDgwMCZpZ3VpZD0wOTkxZjA4Ni00N2I0LTY1NWItMWZmMS1lMTNjNDYxOTY0ZTAmaW5zaWQ9NTUyOQ&ptn=3&ver=2&hsh=3&fclid=0991f086-47b4-655b-1ff1-e13c461964e0&psq=interface+specification+software+engineering&u=a1aHR0cHM6Ly93d3cuaW50ZXJhY3Rpb24tZGVzaWduLm9yZy9saXRlcmF0dXJlL3RvcGljcy91aS1kZXNpZ24&ntb=1
https://www.bing.com/ck/a?!&&p=c5f62b9f0cc298a7JmltdHM9MTcyNDI4NDgwMCZpZ3VpZD0wOTkxZjA4Ni00N2I0LTY1NWItMWZmMS1lMTNjNDYxOTY0ZTAmaW5zaWQ9NTUzMA&ptn=3&ver=2&hsh=3&fclid=0991f086-47b4-655b-1ff1-e13c461964e0&psq=interface+specification+software+engineering&u=a1aHR0cHM6Ly93d3cuaW50ZXJhY3Rpb24tZGVzaWduLm9yZy9saXRlcmF0dXJlL3RvcGljcy91aS1kZXNpZ24&ntb=1
https://www.bing.com/ck/a?!&&p=6846cb911a6a22f8JmltdHM9MTcyNDI4NDgwMCZpZ3VpZD0wOTkxZjA4Ni00N2I0LTY1NWItMWZmMS1lMTNjNDYxOTY0ZTAmaW5zaWQ9NTUzMQ&ptn=3&ver=2&hsh=3&fclid=0991f086-47b4-655b-1ff1-e13c461964e0&psq=interface+specification+software+engineering&u=a1aHR0cHM6Ly93d3cuY291cnNlcmEub3JnL2FydGljbGVzL3VpLWRlc2lnbj9tc29ja2lkPTA5OTFmMDg2NDdiNDY1NWIxZmYxZTEzYzQ2MTk2NGUw&ntb=1
https://www.bing.com/ck/a?!&&p=635deb2a11928b45JmltdHM9MTcyNDI4NDgwMCZpZ3VpZD0wOTkxZjA4Ni00N2I0LTY1NWItMWZmMS1lMTNjNDYxOTY0ZTAmaW5zaWQ9NTUzMg&ptn=3&ver=2&hsh=3&fclid=0991f086-47b4-655b-1ff1-e13c461964e0&psq=interface+specification+software+engineering&u=a1aHR0cHM6Ly93d3cuZ2Vla3Nmb3JnZWVrcy5vcmcvc29mdHdhcmUtZW5naW5lZXJpbmctdXNlci1pbnRlcmZhY2UtZGVzaWduLw&ntb=1


 Best Practices in UI Design

 In addition to the key principles, there are several best practices that can enhance the quality of a UI design:

 Understand the Context: Designers should have a deep understanding of the context in which the UI will be 

used. This includes the physical environment, the type of device, and the user's tasks and goals1.

 Minimize Cognitive Load: The UI should minimize the amount of information users need to remember. 

Information should be visible or easily retrievable when needed1.

 Error Handling: The UI should prevent errors as much as possible and provide simple, understandable 

mechanisms for handling errors when they do occur2.

 Aesthetic and Minimalist Design: The UI should be aesthetically pleasing but also minimalist, displaying only 

the information and controls necessary for the user to complete their tasks2.

 Control and Freedom: Users should feel in control of the UI, with the ability to undo and redo actions 

without penalty2.

https://www.bing.com/ck/a?!&&p=1f8b3e6a3ebbc675JmltdHM9MTcyNDI4NDgwMCZpZ3VpZD0wOTkxZjA4Ni00N2I0LTY1NWItMWZmMS1lMTNjNDYxOTY0ZTAmaW5zaWQ9NTAxNg&ptn=3&ver=2&hsh=3&fclid=0991f086-47b4-655b-1ff1-e13c461964e0&u=a1aHR0cHM6Ly93d3cuZ2Vla3Nmb3JnZWVrcy5vcmcvc29mdHdhcmUtZW5naW5lZXJpbmctdXNlci1pbnRlcmZhY2UtZGVzaWduLw&ntb=1
https://www.bing.com/ck/a?!&&p=cc34fcd8c512841bJmltdHM9MTcyNDI4NDgwMCZpZ3VpZD0wOTkxZjA4Ni00N2I0LTY1NWItMWZmMS1lMTNjNDYxOTY0ZTAmaW5zaWQ9NTAxNw&ptn=3&ver=2&hsh=3&fclid=0991f086-47b4-655b-1ff1-e13c461964e0&u=a1aHR0cHM6Ly93d3cuZ2Vla3Nmb3JnZWVrcy5vcmcvc29mdHdhcmUtZW5naW5lZXJpbmctdXNlci1pbnRlcmZhY2UtZGVzaWduLw&ntb=1
https://www.bing.com/ck/a?!&&p=f1c1fd57c0527e26JmltdHM9MTcyNDI4NDgwMCZpZ3VpZD0wOTkxZjA4Ni00N2I0LTY1NWItMWZmMS1lMTNjNDYxOTY0ZTAmaW5zaWQ9NTAxOA&ptn=3&ver=2&hsh=3&fclid=0991f086-47b4-655b-1ff1-e13c461964e0&u=a1aHR0cHM6Ly93d3cuaW50ZXJhY3Rpb24tZGVzaWduLm9yZy9saXRlcmF0dXJlL3RvcGljcy91aS1kZXNpZ24&ntb=1
https://www.bing.com/ck/a?!&&p=f9ab4489a88a27bbJmltdHM9MTcyNDI4NDgwMCZpZ3VpZD0wOTkxZjA4Ni00N2I0LTY1NWItMWZmMS1lMTNjNDYxOTY0ZTAmaW5zaWQ9NTAxOQ&ptn=3&ver=2&hsh=3&fclid=0991f086-47b4-655b-1ff1-e13c461964e0&u=a1aHR0cHM6Ly93d3cuaW50ZXJhY3Rpb24tZGVzaWduLm9yZy9saXRlcmF0dXJlL3RvcGljcy91aS1kZXNpZ24&ntb=1
https://www.bing.com/ck/a?!&&p=7a5c4a8ff49cd17dJmltdHM9MTcyNDI4NDgwMCZpZ3VpZD0wOTkxZjA4Ni00N2I0LTY1NWItMWZmMS1lMTNjNDYxOTY0ZTAmaW5zaWQ9NTAyMA&ptn=3&ver=2&hsh=3&fclid=0991f086-47b4-655b-1ff1-e13c461964e0&u=a1aHR0cHM6Ly93d3cuaW50ZXJhY3Rpb24tZGVzaWduLm9yZy9saXRlcmF0dXJlL3RvcGljcy91aS1kZXNpZ24&ntb=1


Software Requirement Specification (SRS) 

Format

 In order to form a good SRS, here you will see some points that can be used and should be considered to form 

a structure of good Software Requirements Specification (SRS). These are below mentioned in the table of 

contents and are well explained below.

 Software Requirement Specification (SRS) Format as the name suggests, is a complete specification and 

description of requirements of the software that need to be fulfilled for the successful development of the 

software system. These requirements can be functional as well as non-functional depending upon the type of 

requirement. The interaction between different customers and contractors is done because it is necessary to 

fully understand the needs of customers.





 Introduction

 Purpose of this Document – At first, main aim of why this document is necessary and what’s purpose of 

document is explained and described.

 Scope of this document – In this, overall working and main objective of document and what value it will 

provide to customer is described and explained. It also includes a description of development cost and time 

required.

 Overview – In this, description of product is explained. It’s simply summary or overall review of product.

 General description

 In this, general functions of product which includes objective of user, a user characteristic, features, benefits, 

about why its importance is mentioned. It also describes features of user community.

 Functional Requirements

 In this, possible outcome of software system which includes effects due to operation of program is fully 

explained. All functional requirements which may include calculations, data processing, etc. are placed in a 

ranked order. Functional requirements specify the expected behavior of the system-which outputs should be 

produced from the given inputs. They describe the relationship between the input and output of the system. 

For each functional requirement, detailed description all the data inputs and their source, the units of 

measure, and the range of valid inputs must be specified.



 Interface Requirements

 In this, software interfaces which mean how software program communicates with each other or users either 
in form of any language, code, or message are fully described and explained. Examples can be shared 
memory, data streams, etc.

 Performance Requirements

 In this, how a software system performs desired functions under specific condition is explained. It also 
explains required time, required memory, maximum error rate, etc. The performance requirements part of 
an SRS specifies the performance constraints on the software system. All the requirements relating to the 
performance characteristics of the system must be clearly specified. There are two types of performance 
requirements: static and dynamic. Static requirements are those that do not impose constraint on the 
execution characteristics of the system. Dynamic requirements specify constraints on the execution 
behaviour of the system.

 Design Constraints

 In this, constraints which simply means limitation or restriction are specified and explained for design team. 
Examples may include use of a particular algorithm, hardware and software limitations, etc. There are a 
number of factors in the client’s environment that may restrict the choices of a designer leading to design 
constraints such factors include standards that must be followed resource limits, operating environment, 
reliability and security requirements and policies that may have an impact on the design of the system. An 
SRS should identify and specify all such constraints.



 Non-Functional Attributes

 In this, non-functional attributes are explained that are required by software system for better performance. 
An example may include Security, Portability, Reliability, Reusability, Application compatibility, Data integrity, 
Scalability capacity, etc.

 Preliminary Schedule and Budget

 In this, initial version and budget of project plan are explained which include overall time duration required 
and overall cost required for development of project.

 Appendices

 In this, additional information like references from where information is gathered, definitions of some 
specific terms, acronyms, abbreviations, etc. are given and explained.

 Uses of SRS document

 Development team require it for developing product according to the need.

 Test plans are generated by testing group based on the describe external behaviour.

 Maintenance and support staff need it to understand what the software product is supposed to do.

 Project manager base their plans and estimates of schedule, effort and resources on it.

 customer rely on it to know that product they can expect.

 As a contract between developer and customer.

 in documentation purpose.



Feasibility studies :
 Feasibility Study in Software Engineering is a study to evaluate feasibility of proposed project or system. Feasibility study is one of 

stage among important four stages of Software Project Management Process. As name suggests feasibility study is the feasibility 
analysis or it is a measure of the software product in terms of how much beneficial product development will be for the organization 
in a practical point of view. Feasibility study is carried out based on many purposes to analyze whether software product will be right 
in terms of development, implementation, contribution of project to the organization etc.

 Types of Feasibility Study :

 The feasibility study mainly concentrates on below five mentioned areas. Among these Economic Feasibility Study is most important 
part of the feasibility analysis and Legal Feasibility Study is less considered feasibility analysis.

 Technical Feasibility: In Technical Feasibility current resources both hardware software along with required technology are 
analyzed/assessed to develop project. This technical feasibility study gives report whether there exists correct required resources 
and technologies which will be used for project development. Along with this, feasibility study also analyzes technical skills and 
capabilities of technical team, existing technology can be used or not, maintenance and up-gradation is easy or not for chosen 
technology etc.

 Operational Feasibility: In Operational Feasibility degree of providing service to requirements is analyzed along with how much easy 
product will be to operate and maintenance after deployment. Along with this other operational scopes are determining usability of 
product, Determining suggested solution by software development team is acceptable or not etc.

 Economic Feasibility: In Economic Feasibility study cost and benefit of the project is analyzed. Means under this feasibility study a 
detail analysis is carried out what will be cost of the project for development which includes all required cost for final development 
like hardware and software resource required, design and development cost and operational cost and so on. After that it is analyzed 
whether project will be beneficial in terms of finance for organization or not.

 Legal Feasibility: In Legal Feasibility study project is analyzed in legality point of view. This includes analyzing barriers of legal 
implementation of project, data protection acts or social media laws, project certificate, license, copyright etc. Overall it can be 
said that Legal Feasibility Study is study to know if proposed project conform legal and ethical requirements.

https://www.geeksforgeeks.org/software-engineering-introduction-to-software-engineering/
https://www.geeksforgeeks.org/software-engineering-project-management-process/


 Schedule Feasibility: In Schedule Feasibility Study mainly timelines/deadlines is analyzed for proposed 

project which includes how much time teams will take to complete final project which has a great impact on 

the organization as purpose of project may fail if it can’t be completed on time.

 Cultural and Political Feasibility: This section assesses how the software project will affect the political 

environment and organizational culture. This analysis takes into account the organization’s culture and how 

the suggested changes could be received there, as well as any potential political obstacles or internal 

opposition to the project. It is essential that cultural and political factors be taken into account in order to 

execute projects successfully.

 Market Feasibility: This refers to evaluating the market’s willingness and ability to accept the suggested 

software system. Analyzing the target market, understanding consumer wants and assessing possible rivals are 

all part of this study. It assists in identifying whether the project is in line with market expectations and 

whether there is a feasible market for the good or service being offered.

 Resource Feasibility: This method evaluates if the resources needed to complete the software project 

successfully are adequate and readily available. Financial, technological and human resources are all taken 

into account in this study. It guarantees that sufficient hardware, software, trained labor and funding are 

available to complete the project successfully.



 Aim of Feasibility Study

 The overall objective of the organization are covered and contributed by the system or not.

 The implementation of the system be done using current technology or not.

 Can the system be integrated with the other system which are already exist

 Feasibility Study Process

 The below steps are carried out during entire feasibility analysis.

 Information assessment: It assesses the original project concept and establishes the main aims and 

objectives.

 Information collection: It collects the necessary information and data required to evaluate the project’s 

many components.

 Report writing: It produces an in-depth feasibility report that details the analysis and results.

 General information: It gives a summary of the main points discussed in the report on the feasibility study.



 Need of Feasibility Study

 Feasibility study is so important stage of Software Project Management Process as after completion of 

feasibility study it gives a conclusion of whether to go ahead with proposed project as it is practically 

feasible or to stop proposed project here as it is not right/feasible to develop or to think/analyze about 

proposed project again.

 Along with this Feasibility study helps in identifying risk factors involved in developing and deploying 

system and planning for risk analysis also narrows the business alternatives and enhance success rate 

analyzing different parameters associated with proposed project development.



https://www.geeksforgeeks.org/software-engineering-project-management-process/


Requirements elicitation andanalysis

 Requirements elicitation is the process of gathering and defining the requirements for a software system. The 

goal of requirements elicitation is to ensure that the software development process is based on a clear and 

comprehensive understanding of the customer’s needs and requirements. This article focuses on discussing 

Requirement Elicitation in detail.



What is Requirement Elicitation

 The process of investigating and learning about a system’s requirements from users, clients, and other 

stakeholders is known as requirements elicitation. Requirements elicitation in software engineering is perhaps 

the most difficult, most error-prone, and most communication-intensive software development.

 Requirement Elicitation can be successful only through an effective customer-developer partnership. It is 

needed to know what the users require.

 Requirements elicitation involves the identification, collection, analysis, and refinement of the requirements 

for a software system.

 Requirement Elicitation is a critical part of the software development life cycle and is typically performed at 

the beginning of the project.

 Requirements elicitation involves stakeholders from different areas of the organization, including business 

owners, end-users, and technical experts.

 The output of the requirements elicitation process is a set of clear, concise, and well-defined requirements 

that serve as the basis for the design and development of the software system.

 Requirements elicitation is difficult because just questioning users and customers about system needs may not 

collect all relevant requirements, particularly for safety and dependability.

 Interviews, surveys, user observation, workshops, brainstorming, use cases, role-playing, and prototyping are 

all methods for eliciting requirements.

https://www.geeksforgeeks.org/software-engineering-introduction-to-software-engineering/
https://www.geeksforgeeks.org/what-is-software-development/
https://www.geeksforgeeks.org/software-development-life-cycle-sdlc/


Importance of Requirements Elicitation
 Compliance with Business Objectives: The process of elicitation guarantees that the software development 

endeavors are in harmony with the wider company aims and objectives. Comprehending the business context 

facilitates the development of a solution that adds value for the company.

 User Satisfaction: It is easier to create software that fulfills end users’ needs and expectations when they are 

involved in the requirements elicitation process. Higher user pleasure and acceptance of the finished product 

are the results of this.

 Time and Money Savings: Having precise and well-defined specifications aids in preventing miscommunication 

and rework during the development phase. As a result, there will be cost savings and the project will be 

completed on time.

 Compliance and Regulation Requirements: Requirements elicitation is crucial for projects in regulated 

industries to guarantee that the software conforms with applicable laws and norms. In industries like 

healthcare, finance, and aerospace, this is crucial.

 Traceability and Documentation: Throughout the software development process, traceability is based on 

well-documented requirements. Traceability helps with testing, validation, and maintenance by ensuring that 

every part of the software can be linked to a particular requirement.

https://www.geeksforgeeks.org/software-development-process/


Requirements Elicitation Activities
 Requirements elicitation includes the subsequent activities. A few of them are listed below:

 Knowledge of the overall area where the systems are applied.

 The details of the precise customer problem where the system is going to be applied must be understood.

 Interaction of system with external requirements.

 Detailed investigation of user needs.

 Define the constraints for system development.

 Features of Requirements Elicitation

 Stakeholder engagement: Requirements elicitation involves engaging with stakeholders such as customers, end-users, project sponsors, and 
subject-matter experts to understand their needs and requirements.

 Gathering information: Requirements elicitation involves gathering information about the system to be developed, the business processes it 
will support, and the end-users who will be using it.

 Requirement prioritization: Requirements elicitation involves prioritizing requirements based on their importance to the project’s success.

 Requirements documentation: Requirements elicitation involves documenting the requirements clearly and concisely so that they can be 
easily understood and communicated to the development team.

 Validation and verification: Requirements elicitation involves validating and verifying the requirements with the stakeholders to ensure they 
accurately represent their needs and requirements.

 Iterative process: Requirements elicitation is an iterative process that involves continuously refining and updating the requirements based on 
feedback from stakeholders.

 Communication and collaboration: Requirements elicitation involves effective communication and collaboration with stakeholders, project 
team members, and other relevant parties to ensure that the requirements are clearly understood and implemented.

 Flexibility: Requirements elicitation requires flexibility to adapt to changing requirements, stakeholder needs, and project constraints.

https://www.geeksforgeeks.org/software-engineering-verification-and-validation/


Requirements validation

 Requirements validation techniques are essential processes used to ensure that software requirements are 

complete, consistent, and accurately reflect what the customer wants. These techniques help identify and fix 

issues early in the development process, reducing the risk of costly errors later on. By thoroughly validating 

requirements, teams can ensure that the final product meets user needs and expectations. This article focuses 

on discussing the requirement validation technique in detail.

 Requirements validation is the process of checking that requirements defined for development, define the 

system that the customer wants. To check issues related to requirements, we perform requirements validation. 

We typically use requirements validation to check errors at the initial phase of development as the error may 

increase excessive rework when detected later in the development process. In the requirements validation 

process, we perform a different type of test to check the requirements mentioned in the Software 

Requirements Specification (SRS), these checks include:

 Completeness checks

 Consistency checks

 Validity checks

 Realism checks

 Ambiguity checks

 Variability

https://www.geeksforgeeks.org/software-engineering-quality-characteristics-of-a-good-srs
https://www.geeksforgeeks.org/software-engineering-quality-characteristics-of-a-good-srs


Requirement Validation Techniques

 There are several techniques that are used either individually or in conjunction with other 

techniques to check entire or part of the system:

 Test Case Generation

 Prototyping

 Requirements Reviews

 Automated Consistency Analysis

 Walk-through

 Simulation

 Checklists for Validation

https://www.geeksforgeeks.org/requirement-reviews-in-software-development/
https://www.geeksforgeeks.org/requirement-reviews-in-software-development/
https://www.geeksforgeeks.org/walkthrough-in-software-engineering/


 1. Test Case Generation

 The requirement mentioned in the SRS document should be testable, the conducted tests reveal the error 

present in the requirement. It is generally believed that if the test is difficult or impossible to design, this 

usually means that the requirement will be difficult to implement and it should be reconsidered.

 2. Prototyping

 In this validation technique the prototype of the system is presented before the end-user or customer, they 

experiment with the presented model and check if it meets their need. This type of model is mostly used to 

collect feedback about the requirement of the user.

 3. Requirements Reviews

 In this approach, the SRS is carefully reviewed by a group of people including people from both the contractor 

organizations and the client side, the reviewer systematically analyses the document to check errors and 

ambiguity.

 4. Automated Consistency Analysis

 This approach is used for the automatic detection of an error, such as non-determinism, missing cases, a type 

error, and circular definitions, in requirements specifications. First, the requirement is structured in formal 

notation then the CASE tool is used to check the in-consistency of the system, The report of all inconsistencies 

is identified, and corrective actions are taken.



 5. Walk-through

 A walkthrough does not have a formally defined procedure and does not require a differentiated role 

assignment.

 Checking early whether the idea is feasible or not.

 Obtaining the opinions and suggestions of other people.

 Checking the approval of others and reaching an agreement.

 6. Simulation

 Simulating system behavior in order to verify requirements is known as simulation. This method works 

especially well for complicated systems when it is possible to replicate real-world settings and make sure the 

criteria fulfil the desired goals.

 7. Checklists for Validation

 It employs pre-made checklists to methodically confirm that every prerequisite satisfies predetermined 

standards. Aspects like completeness, clarity and viability can all be covered by checklists.



Importance of Requirements Validation 

Techniques

 Accuracy and Clarity: It makes sure that the requirements are precise, unambiguous and clear. This helps to 

avoid miscommunications and misunderstandings that may result in mistakes and more effort in subsequent 

phases of the project.

 User Satisfaction: It confirms that the requirements meet the wants and expectations of the users, which 

helps to increase user happiness. This aids in providing a product that satisfies consumer needs and improves 

user experience as a whole.

 Early Issue Identification: It makes it easier to find problems, ambiguities or conflicts in the requirements 

early on. It is more economical to address these issues early in the development phase rather than later, when 

the project is far along.

 Prevents the Scope Creep: It ensures that the established requirements are well stated and recorded, which 

helps to prevent scope creep. By establishing defined parameters for the project’s scope, requirements 

validation helps to lower the possibility of uncontrollably changing course.

 Improving Quality: It enhances the software product’s overall quality. By detecting and resolving possible 

quality problems early in the development life cycle, requirements validation contributes to the creation of a 

more durable and dependable final product.



Requirement Management

The requirement management process is the process of managing changing 

requirements during the requirements engineering process and system 

development where the new requirements emerge as a system is being 

developed and after it has gone into use. During this process, one must keep 

track of individual requirements and maintain links between dependent 

requirements so that one can assess the impact of requirements changes along 

with establishing a formal process for making change proposals and linking these 

to system requirements.



 Now during this phase, there needs to be a certain level of requirement management details which will help 

to make Requirement Management decisions. To accumulate the details for taking that decision one can follow 

the following processes:

 Requirements Identification: In this, the requirement must be uniquely identified so that it can be cross-

referenced with other requirements. Here, one can learn what is important and required and what is not and 

it also helps to establish a foundation for product vision, scope, cost, and schedule.

 Requirement change management process: This is the set of activities that assess the impact and cost of 

changes.

 Traceability policies: The main purpose of this policy is to keep a record of the defined relationships between 

each requirement and the system designs which will help to minimize the risks.

 Tool support: Tools like MS Excel, spreadsheets, or a simple database system can be used.

 Now, after the details have been gathered for the Requirement Management, it’s time to see whether the 

change needs to be implemented or not. For this, we use the Requirement Change Management process. In 

this, the three basic steps that we follow are:

 Problem analysis and change specification

 Change analysis and costing

 Change implementation



 At first, the identified problem or the proposal for change is analyzed to ensure its validity. After the analysis 

of the problem is done, the result is given back to the specific change requestor who may either respond with 

a more specific requirements change proposal or decide to withdraw the request. Once it is done we have 

successfully moved to the second phase, where the analysis is done over the effect of the proposed change 

via traceability policies and general knowledge of the system requirements. Once this analysis is completed, 

we move to a point where the final decision is to be made on whether or not to proceed with the 

requirements change.

 If we decide to implement the change then the requirements document and, where necessary, the system 

design and implementation, are modified. If we decide we do not want to implement the change we 

eradicate this problem and move to the next. Once the implementation i.e. modification is done as per the 

request, the implementation is revised and even modified in the document as well so that in the future it can 

be implemented.

 Finally, in this way, the Requirement Management Process is completed.

 Advantages of the Requirement Management Process:

 Recognizing the need for change in the requirements.

 Improved team communication.

 It helps to minimize errors at the early stage of the development cycle.



 Context diagrams serve as a foundational tool, helping designers and stakeholders grasp the scope and boundaries of 
a system under consideration. These diagrams provide a high-level view, illustrating how the system interacts with 
external entities and the environment. This article explores the significance of context diagrams in system design, 
their key components, and how to create them.

 What are Context Diagrams?

 Context Diagrams are high-level visual representations that show the interactions between a system being developed 
and its external entities, such as users, other systems, or processes. They provide a big-picture view of how the 
system fits into its environment without diving into the internal details of the system itself.

 Typically, they consist of a central system surrounded by external entities, with arrows representing data flow or 
interactions between them.

 They’re useful for understanding system boundaries and dependencies.

 Importance of Context Diagrams in Systems Analysis

 Scope Definition: Context diagrams define the system’s boundaries by highlighting its interactions with external 
entities, ensuring that the analysis focuses on pertinent components and processes.

 Requirement Gathering: These diagrams visualize how the system interacts with its environment, aiding in 
identifying both functional and non-functional requirements. They offer clarity on the system’s objectives and its 
external interactions.

 Communication: Acting as a bridge between stakeholders, such as business users, developers, and project managers, 
context diagrams foster shared understanding of the system’s scope and context. They streamline discussions and 
decision-making throughout the development process.

 Risk Identification: Context diagrams assist in spotting potential risks stemming from the system’s interactions with 
external entities. They help stakeholders assess the implications of external factors on the system’s performance, 
security, and reliability.



Behavioral models
 Behavioral models in software engineering are used to represent the dynamic behavior of a system as it 

interacts with its environment. These models help in understanding how a system responds to various stimuli, 

which can be either data or events. Here are the main types of behavioral models:

 Data Processing Model: This model uses Data Flow Diagrams (DFDs) to represent how data moves through the 

system. It shows the flow of data between external entities, processes, and data stores. DFDs help in 

visualizing the data processing steps and the interactions between different components of the system1.

 State Machine Model: This model uses state diagrams to depict the system’s response to external events. It 

shows the different states a system can be in and the transitions between these states triggered by 

events. State diagrams are particularly useful for modeling systems with complex state-dependent behavior2.

 Behavioral models are crucial for understanding the overall behavior of a system and ensuring that it meets 

the required specifications. They provide a clear and visual way to analyze how a system operates and reacts 

under different conditions3.

https://www.javatpoint.com/behavioural-model-in-software-engineering
https://www.javatpoint.com/behavioural-model-in-software-engineering
https://www.geeksforgeeks.org/short-note-on-behavioral-model/
https://www.educba.com/behavioral-model-in-software-engineering/
https://www.educba.com/behavioral-model-in-software-engineering/


 Behavioral Model is specially designed to make us understand behavior and factors that influence behavior of 

a System. Behavior of a system is explained and represented with the help of a diagram. This diagram is 

known as State Transition Diagram. It is a collection of states and events. It usually describes overall states 

that a system can have and events which are responsible for a change in state of a system.

 So, on some occurrence of a particular event, an action is taken and what action needs to be taken is 

represented by State Transition Diagram.

 Example :

Consider an Elevator. This elevator is for n number of floors and has n number of buttons one for each floor.

Elevator’s working can be explained as follows :

 Elevator buttons are type of set of buttons which is there on elevator. For reaching a particular floor you 

want to visit, “elevator buttons” for that particular floor is pressed. Pressing, will cause illumination and 

elevator will start moving towards that particular floor for which you pressed “elevator buttons”. As soon as 

elevator reaches that particular floor,

illumination gets canceled.

 Floor buttons are another type of set of buttons on elevator. If a person is on a particular floor and he wants 

to go on another floor, then elevator button for that floor is pressed. Then, process will be same as given 

above. Pressing, will cause illumination and elevator to start moving, and when it reaches on desired floor, 

illumination gets canceled.



Advantages :
•Behavior and working of a system can easily be understood without any effort.
•Results are more accurate by using this model.
•This model requires less cost for development as cost of resources can be minimal.
•It focuses on behavior of a system rather than theories.
Disadvantages :
•This model does not have any theory, so trainee is not able to fully understand basic 
principle and major concept of modeling.
•This modeling cannot be fully automated.
•Sometimes, it’s not easy to understand overall result.
•Does not achieve maximum productivity due to some technical issues or any errors.



Data models

Scalability

 What is Data Modeling?

 Data modeling is the process of creating a conceptual representation of data and its relationships within a system. It 
involves defining the structure, constraints, and semantics of data in a way that aligns with the requirements and 
objectives of the organization or system being developed.

 In simpler terms, data modeling is like creating a blueprint or map that describes how data is organized, stored, and 
accessed within a system.

 It helps stakeholders, including developers, architects, and business analysts, understand the data requirements, 
define data entities (such as tables, documents, or objects), specify their attributes, and establish relationships 
between them.

 Importance of Data Modeling in System Design

 Clarity and Consistency: Through entities, attributes, and relationships, data structuring and management are 
brought to a clearer and more consistent level by the process of data modeling in the system.

 Efficiency: High-quality data models facilitate information storage and retrieval, and there will be faster 
performance of the system besides the reduction of resource usage.

 Scalability: The robust data model creates the basis for scalability, by what the systems amounts of the incoming 
data by means of slowing down their performance or reliability.

 Data Integrity: Data modeling offers data accuracy and integrity-checking capabilities by means of data validation, 
governing the data throughout its existence.

 Alignment with Business Requirements: Through the business rules and logic that are embedded in the data model, 
designers can make sure the system is going well with the business requirements for effectiveness.

https://www.geeksforgeeks.org/what-is-scalability-and-how-to-achieve-it-learn-system-design/


Types of Data Models

 1. Conceptual Data Model

 It is a high-level, abstract representation of the entities, relationships, and attributes in a system, 

independent of any specific implementation details.

 Focuses on the business requirements and semantics of the data, providing a clear understanding of the data 

entities and their relationships.

 Typically used during the initial stages of system design to facilitate communication between stakeholders and 

guide the development of more detailed data models.

 2. Logical Data Model

 It is a detailed representation of the data structures, relationships, and constraints within a system, 

specifying how data will be organized and stored in a database.

 Translates the concepts defined in the conceptual data model into specific data types, tables, columns, and 

relationships, often using database-specific constructs such as primary keys, foreign keys, and indexes.

 Enables database designers and developers to design database schemas that are efficient, normalized, and 

maintainable.



 3. Physical Data Model

 It is a concrete representation of the database schema, specifying the physical storage structures, file 

organization, indexing mechanisms, and other implementation details.

 Maps the logical data model onto the storage mechanisms provided by the underlying database management 

system (DBMS), taking into account performance considerations, storage constraints, and optimization 

techniques.

 Guides database administrators in the implementation, configuration, and maintenance of the database 

system, ensuring optimal performance and scalability.

 4. Hierarchical Data Model

 Organizes data in a hierarchical structure, where each data element has a parent-child relationship with other 

elements, forming a tree-like hierarchy.

 Commonly used in hierarchical databases, where data is organized in parent-child relationships, and each 

record (node) can have multiple child records.

 Provides fast access to data hierarchies but may be less flexible and scalable compared to other data models.

 5. Object-Oriented Data Model

 It represents data using object-oriented concepts such as classes, objects, inheritance, encapsulation,



structured methods 
 Structured Analysis and Structured Design (SA/SD) is a diagrammatic notation that is designed to help people 

understand the system. The basic goal of SA/SD is to improve quality and reduce the risk of system failure. It 

establishes concrete management specifications and documentation. It focuses on the solidity, pliability, and 

maintainability of the system.

 Structured Analysis and Structured Design (SA/SD) is a software development method that was popular in the 

1970s and 1980s. The method is based on the principle of structured programming, which emphasizes the 

importance of breaking down a software system into smaller, more manageable components.

 In SA/SD, the software development process is divided into two phases: Structured Analysis and Structured 

Design. During the Structured Analysis phase, the problem to be solved is analyzed and the requirements are 

gathered. The Structured Design phase involves designing the system to meet the requirements that were 

gathered in the Structured Analysis phase.

 Structured Analysis and Structured Design (SA/SD) is a traditional software development methodology that was 

popular in the 1980s and 1990s. It involves a series of techniques for designing and developing software 

systems in a structured and systematic way. Here are some key concepts of SA/SD:

 Some advantages of SA/SD include its emphasis on structured design and documentation, which can help 

improve the clarity and maintainability of the system. However, SA/SD has some disadvantages, including its 

rigidity and inflexibility, which can make it difficult to adapt to changing business requirements or 

technological trends. Additionally, SA/SD may not be well-suited for complex, dynamic systems, which may 

require more agile development methodologies.



 SA/SD is combined known as SAD and it mainly focuses on the following 3 points:

 System

 Process

 Technology

 SA/SD involves 2 phases:

 Analysis Phase: It uses Data Flow Diagram, Data Dictionary, State Transition diagram and ER diagram.

 Design Phase: It uses Structure Chart and Pseudo Code.

 1. Analysis Phase:

 Analysis Phase involves data flow diagram, data dictionary, state transition diagram, and entity-relationship diagram.

 Data Flow Diagram:
In the data flow diagram, the model describes how the data flows through the system. We can incorporate the Boolean operators and & or link 
data flow when more than one data flow may be input or output from a process. For example, if we have to choose between two paths of a 
process we can add an operator or and if two data flows are necessary for a process we can add an operator. The input of the process “check-
order” needs the credit information and order information whereas the output of the process would be a cash-order or a good-credit-
order. Data Dictionary:
The content that is not described in the DFD is described in the data dictionary. It defines the data store and relevant meaning. A physical data 
dictionary for data elements that flow between processes, between entities, and between processes and entities may be included. This would 
also include descriptions of data elements that flow external to the data stores. A logical data dictionary may also be included for each such 
data element. All system names, whether they are names of entities, types, relations, attributes, or services, should be entered in the 
dictionary.

 State Transition Diagram:
State transition diagram is similar to the dynamic model. It specifies how much time the function will take to execute and data access 
triggered by events. It also describes all of the states that an object can have, the events under which an object changes state, the conditions 
that must be fulfilled before the transition will occur and the activities were undertaken during the life of an object.

 ER Diagram:
ER diagram specifies the relationship between data store. It is basically used in database design. It basically describes the relationship 
between different entities.



 2. Design Phase:

 Design Phase involves structure chart and pseudocode.

 Structure Chart:

It is created by the data flow diagram. Structure Chart specifies how DFS’s processes are grouped into tasks 

and allocated to the CPU. The structured chart does not show the working and internal structure of the 

processes or modules and does not show the relationship between data or data flows. Similar to other SASD 

tools, it is time and cost-independent and there is no error-checking technique associated with this tool. The 

modules of a structured chart are arranged arbitrarily and any process from a DFD can be chosen as the 

central transform depending on the analysts’ own perception. The structured chart is difficult to amend, 

verify, maintain, and check for completeness and consistency.

 Pseudo Code: It is the actual implementation of the system. It is an informal way of programming that 

doesn’t require any specific programming language or technology.



 Advantages of Structured Analysis and Structured Design (SA/SD):

 Clarity and Simplicity: The SA/SD method emphasizes breaking down complex systems into smaller, more 

manageable components, which makes the system easier to understand and manage.

 Better Communication: The SA/SD method provides a common language and framework for communicating 

the design of a system, which can improve communication between stakeholders and help ensure that the 

system meets their needs and expectations.

 Improved maintainability: The SA/SD method provides a clear, organized structure for a system, which can 

make it easier to maintain and update the system over time.

 Better Testability: The SA/SD method provides a clear definition of the inputs and outputs of a system, which 

makes it easier to test the system and ensure that it meets its requirements.

 Disadvantages of Structured Analysis and Structured Design (SA/SD):

 Time-Consuming: The SA/SD method can be time-consuming, especially for large and complex systems, as it 

requires a significant amount of documentation and analysis.

 Inflexibility: Once a system has been designed using the SA/SD method, it can be difficult to make changes 

to the design, as the process is highly structured and documentation-intensive.

 Limited Iteration: The SA/SD method is not well-suited for iterative development, as it is designed to be 

completed in a single pass.


	Slide 1: Unit-3 Software Requirements and System Models 
	Slide 2
	Slide 3: Functional and non-functional requirements
	Slide 4: Functional Requirements
	Slide 5: Difference between Functional Requirements and Non-Functional Requirements:
	Slide 6: User requirements
	Slide 7
	Slide 8
	Slide 9
	Slide 10: System requirements
	Slide 11
	Slide 12: interface specification
	Slide 13
	Slide 14: Software Requirement Specification (SRS) Format
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Feasibility studies :
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Requirements elicitation andanalysis
	Slide 23: What is Requirement Elicitation
	Slide 24: Importance of Requirements Elicitation
	Slide 25: Requirements Elicitation Activities
	Slide 26: Requirements validation
	Slide 27: Requirement Validation Techniques
	Slide 28
	Slide 29
	Slide 30: Importance of Requirements Validation Techniques
	Slide 31: Requirement Management
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Behavioral models
	Slide 36
	Slide 37
	Slide 38: Data models
	Slide 39: Types of Data Models
	Slide 40
	Slide 41: structured methods 
	Slide 42
	Slide 43
	Slide 44

